The isoperimetric inequality on a surface

نویسندگان

  • Peter Topping
  • P. Topping
چکیده

We prove a new isoperimetric inequality which relates the area of a multiply connected curved surface, its Euler characteristic, the length of its boundary, and its Gaussian curvature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Isoperimetric Inequalities for Log-convex Measures

Let μ = ρdx be a Borel measure on Rd. A Borel set A ⊂ R is a solution of the isoperimetric problem if for any B ⊂ R satisfying μ(A) = μ(B) one has μ(∂A) ≤ μ(∂B), where μ(∂A) = ∫ ∂A ρ dHd−1 is the corresponding surface measure. There exists only a small number of examples where the isoperimetric problem has an exact solution. The most important case is given by Lebesgue measure λ on R, the solut...

متن کامل

A Mass Transportation Approach to Quantitative Isoperimetric Inequalities

A sharp quantitative version of the anisotropic isoperimetric inequality is established, corresponding to a stability estimate for the Wulff shape of a given surface tension energy. This is achieved by exploiting mass transportation theory, especially Gromov’s proof of the isoperimetric inequality and the Brenier-McCann Theorem. A sharp quantitative version of the Brunn-Minkowski inequality for...

متن کامل

The Periodic Isoperimetric Problem

Given a discrete group G of isometries of R3, we study the Gisoperimetric problem, which consists of minimizing area (modulo G) among surfaces in R3 which enclose a G-invariant region with a prescribed volume fraction. If G is a line group, we prove that solutions are either families of round spheres or right cylinders. In the doubly periodic case we prove that for most rank two lattices, solut...

متن کامل

Relative Isoperimetric Inequality for Minimal Submanifolds in a Riemannian Manifold

Let Σ be a domain on an m-dimensional minimal submanifold in the outside of a convex set C in S or H. The modified volume M Σ is introduced by Choe and Gulliver 1992 and we prove a sharp modified relative isoperimetric inequality for the domain Σ, 1/2 mωmM Σ m−1 ≤ Volume ∂Σ−∂C , where ωm is the volume of the unit ball of R. For any domain Σ on a minimal surface in the outside convex set C in an...

متن کامل

Double bubbles minimize

The classical isoperimetric inequality in R3 states that the surface of smallest area enclosing a given volume is a sphere. We show that the least area surface enclosing two equal volumes is a double bubble, a surface made of two pieces of round spheres separated by a flat disk, meeting along a single circle at an angle of 120.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998